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Let o be a nondecreasing function on [ —1, 1] with infinitely many points
of increase such that all moments of da are finite and {P, },

P,(x):=P,(do, x) =p,x"+ - - €))

(9, := y.(da) > 0), the orthonormal polynomials with respect to da. We call
do a measure.
Denote by x;, = x;,(da) the zeros of P,(da) and by

L(f.3) 1= 3 G5 o, 5,

the Lagrange interpolating polynomial of f € C[—1, 1], where the funda-
mental polynomials

P, (da, x)

b2, X) = B G o) =)’

As we know,

in(x)¢=/1n(doc,x)=[§]Pi(da,x)]_ [g i (do, x)]
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are called the Christoffel functions, where
Atn = Ay (dot) = 2,,(dox, x3,), k=1,2,..,n

The orthogonal polynomials {P,(dx)} satisfy the three-term recurrence
relation

Pn(do)
x—a,(do)) P,(do, x) = P, . (do, x
(e ) Py (do, x) = =0 P, (da, )
yn—l(da')
+ P,_,(da, x), n=0,1, .., 2
oy i) @
where P_; =0,y_, =0, and
o, (da) = | ' xP2(da, x) da(x). 3)
-1

In his memoir [2], Nevai introduced the class of measures M := M(0, 1),
for which de € M means

yor(da) 1

im =) "2 @
and
lim o,(da) = 0. &)

n— o0

Nevai proved the following characterizations of orthogonal polynomials
with respect to measures in M.

THEOREM A [2, Theorems 4.1.12 and 4.1.13, pp. 32-34]. Let do be a
measure supported in [—1, 1]. If do e M, then

. P,(da, z)
1 _—
nos P (das 2)
holds uniformly for every closed subset of C\[—1,1], where ¢(z)=z+
z2—1.

Conversely, if (6) holds for an unbounded sequence of values of z, then
doe M.

$(2) (©6)

THEOREM B [2, Theorems 3.2.3 and 3.2.4, pp. 17-34]. Let da be a
measure supported in [—1, 1]. Then do € M if and only if

lim 3 (o) f (i) Pir(dos x) =2 [ f0) /T=dx ()

n— oo

holds for every bounded and Riemann integrable function f on [—1, 1].
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The main aim of this paper is to give new characterizations of orthogo-
nal polynomials with respect to measures in M, which are stated as follows.

THEOREM 1. Let da be a measure supported in [—1,1]. If do e M, then
the relation (6) holds for every ze C\ (-1, 1) and

~_1(do, xy,
hm z j'kn(d )%
kn

n—>0 p_1

— lim Z Md)M
n 2
Clim Y A (e Do (% Xin)

n—o g_1 1+xk,,
=2. ®)
In particular, we have
P,(da, 1 P,(da, —1
fim D@D g Blde =D )

now Po_(do, 1) now P, (da, —1)
THEOREM 2. Let do be a measure supported in [—1, 1]. Then the follow-

ing statements are equivalent:

(a) the relation do € M holds;
(b) the relation

S
1./1—x?

holds for every bounded and Riemann integrable function f on [—1, 1];

im S ) fu) DX 2 O o)

(c) the relation

1 d kn 1
lim 3 74,(d) fs) I 2 ) [0

holds for every bounded and Riemann integrable function f on [—1, 1];
(d) the relation

" P’ (do,x,) 21 1=
lim 3 () S ) 2 gy [ )

n->o p_1 1+an

holds for every bounded and Riemann integrable function f on [—1, 1].



4 YING GUANG SHI

THEOREM 3. Let doeM, f be a bounded and Riemann integrable func-
tion on [—1, 1], U, be the nth Chebyshev polynomial of the second kind, and
m be a fixed integer. Then

lim S Ae(da) fCx) By y(dot, ) Srem(0% Xio)

n— p_1 l_xkn

stgn m

- j S %) Upy1 (%) fx (13)

" P d
im Y A(da) fCxe) By y(do, ) 2rem(% Xia)
n—o g 1=,

= T 0 Upya(0) f (14

" P d
m Y A(do) £ (ri) Py (dot, xp) L% Xin)
n—o p_1 l+xk,,

A —
= R SO U () f1 A as)

The relations (10) and (13) were proved by Nevai in [2, Theorem 4.2.3,
pp. 39-41; Theorem 4.2.17, p. 48] for the Szegod class S, for which da e S
means [In «'(x)]/ /1 —x? e L'(—1, 1).

Before proving the theorems we establish an auxiliary result which will
play a crucial role in this paper.

and

LemMMA 1. If a sequence of positive numbers {a, }_, satisfies

lim Gttt o (16)
n—oo a,
then
lim 2= — 1. 17)

n-oo a,

Proof. First we observe that

< B:=lim sup ot <2, (18)

n— o a,

. . a,
< A :=1lim inf

n—oo a,

N =

n
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for otherwise it would contradict (16). Next it suffices to show
A=B=1. 19)

To prove A =1 assume that for some subsequence of positive integers {#; }
we have

lim $=l— 4, (20)
k— ank
Since by (16)
lim G2+, _ lim Mzz’ 1)
k— o0 ank_l k— o0 a”k
according to (20) we obtain
1 24-1
lim %2 =2 fim % =2 — =0
k— o ank_l k— o a,,k_l A A
By (18) we have
24—1 > 4
4 -7

Hence 1 +4*—24<0,ie., (A—1)*<0. This gives 4 = 1. Similarly, if

. a,
lim %*=— =B,
k— o0 a,,k

then by the same argument as above we obtain B = 1. This proves (19) and
an. 1

Proof of Theorem 1. To prove that the relation (6) holds for every
ze C\(~1, 1) by Theorem A it is enough to show the relation (9). Now let
us do it. The relation (2) with x = 1 gives

zynPn+1(l) yn—IPn—l(l)

1—a, (22)
Yn+1Pn(1) ynPn(l)
By (22) we obtain
Pn_1(1)+Pn+1(1)Z[Pn_1(1)+ VaPui1 (1) ]+[1_ Va ]Pnﬂ(l)
Pn(l) Pn(l) yn—lyn+1Pn(l) Vn—1Vn+1 Pn(l)
2
Vn Vn Pn+1(1)
SRR P [0
Vn—1 VYn—17n+1 Pn(l)
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By (3) we see |a,| < 1 and hence 0 < 1 —a,, < 2. By means of (22) we get

Pn+1(1)<yn+l (1—0(.)
P.(1) 7,

Hence by (4) and (5)

. P (D)+P, (1) . 12
Jim 2. = im

n Va Pa(D _
(l_a”)+|:l_yn—1yn+1] Pn(l) }_2

n—1
Applying Lemma 1 we get

R P
lim = lim

=1.
now P,_1(1) now Py(1)

Similarly, the second relation of (9) follows from the relation (2) with
x=-—1:

ynl n+1( l)l Vn-1 |Pn—1(_1)|

l+a,= (23)

Yur1 1B (=D p, [P(=1)]

To prove (8) we need to use some known formulas [17]:
P_i(1) 7wy & P (x,)
=l 3 g 24)
P,(1) Vn kZ=:1 . 1 =X

Pnfl(_l) Vn-1 - Pi—l(xkn)
= i _—, 25
B g & T, @)

and

Pn—l(l)_Pn—l(_l)_zyn—l 2”: Jl Pﬁ—l(xkn)‘ (26)

Pn(l) Pn(_l) B Pn k=1 o l_xin

Clearly, (8) follows from (9), (4), and (24)—(26). |

Proof of Theorem 2. We give the proof of equivalence of Statements (a)
and (b) only; the proof of equivalence of Statements (a) and (c) as well as
Statements (a) and (d) is similar. The proof follows the line given in [2,
pp- 40-41].

(a) = (b). Lete 0<e< 1, be an arbitrary and fixed number. Since the
function [ f(x)/(1—=x*)]I(x);_1 14 1_s is bounded and Riemann integrable
on [—1,1], where I; ,,,, . is the characteristic function of the interval
[—1+¢&, 1—¢], by Theorem B we have

lim Y @ﬂm"d%—fmjf)”

P20 x| <1-e

@7
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Inserting f = 1 into (27) gives

2
lim Z ikn Pnfl(xkn)__J‘
1+£

(28)
20 gl <1-—¢ l_xin
Using an obvious formula
=1
it follows from (8) and (28) that
. n l(xkn) 4
lim ¥ gt f (29)

=0 x> 1—¢

We have

fin) T S‘;"")—g [ fﬁ(f) : dx‘

n l(xkn) 2 ('x) ]
/lkn Xin d
|:|xk,,|§1 e f( ) “[ 1+84/1 X x

FY S P—S‘)

|xpn| > 1—¢ 1—-

A Al A

Pr_i(x,) 2 iGN
|xk,,|2<:l —¢ ik"f(xk") ku: ‘f l+e  / 1—x dx‘

+ sup_ |f(x>|][%§1_elkn% =N sﬁ ]

Then by virtue of (27) and (29)

<

lim sup

n— o0

) 200 f(0)
Z zk,,f(xk,,)—" 1 dx‘
/ 1 —

dx.

<[pup, N Vi

Hence as ¢ » 0 we get (10).
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(b) = (a). If f is an arbitrary bounded and Riemann integrable func-
tion on [—1, 1], then f(x)(1—x?) is also a bounded and Riemann inte-
grable function on [—1, 1]. Inserting the function f(x)(1—x?) into (10)
yields the relation (7). Applying Theorem B we conclude da e M. ||

Proof of Theorem 3. Again we show (13) only, because the proof of (14)
and (15) runs in a similar way. Applying Theorems 3.1.3 (m > 0) and 3.1.13
(m < 0)in [2, pp. 9 and 13] and using the recurrence relation (2) we get

Pn+m(xkn) = _[Sign m] l]|m|—1(xkn) Pn—l(xkn)+cn[|Pn—l(xkn)| + |Pn—2(xkn)|]’

where lim, , ,, ¢, =0 holds uniformly for 1 <k <n if m is fixed. Using the
recurrence relation (2) replacing n by n— 1 and putting x = x;,, we obtain

Vn— 29,
[P, (Xe)| = 1 (Xt — 1) P (X)) < ' |P,_1 (X))l
n—2 n—2
Thus
Pn+m(xkn) = _[Sign m] l]|m|—1(xkn) Pn—l(xkn)+c: |Pn—1(xkn)|9
where lim, , ¢ =0 again holds uniformly for 1<k<n if m is fixed.
Hence
" Pﬂ m(x n)
z /lknf(xkn) Pn—l(xkn) 1+—2k
k=1 — X
. u Py (%)
= —[sign m] Z Jien | (Xin) U|m|—1(xkn) 11—2k
k=1 — Xikn

P, (X)) [P (X))
1—x3, ’

+cn Y Aan f(X)
k=1

which by (10) implies (13). |
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