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Let a be a nondecreasing function on [−1, 1] with infinitely many points
of increase such that all moments of da are finite and {Pn},

Pn(x) :=Pn(da, x)=cnxn+·· · (1)

(cn :=cn(da) > 0), the orthonormal polynomials with respect to da. We call
da a measure.
Denote by xkn=xkn(da) the zeros of Pn(da) and by

Ln(f, x) :=C
n

k=1
f(xkn) akn(da, x),

the Lagrange interpolating polynomial of f ¥ C[−1, 1], where the funda-
mental polynomials

akn(da, x)=
Pn(da, x)

P −n(da, xkn)(x−xkn)
, k=1, 2, ..., n.

As we know,

ln(x) :=ln(da, x)=5 C
n−1

k=0
P2k(da, x)6

−1

=5 C
n

k=1

a
2
kn(da, x)
lkn
6−1



are called the Christoffel functions, where

lkn :=lkn(da)=ln(da, xkn), k=1, 2, ..., n.

The orthogonal polynomials {Pn(da)} satisfy the three-term recurrence
relation

(x−an(da)) Pn(da, x)=
cn(da)
cn+1(da)

Pn+1(da, x)

+
cn−1(da)
cn(da)

Pn−1(da, x), n=0, 1, ..., (2)

where P−1=0, c−1=0, and

an(da)=F
1

−1
xP2n(da, x) da(x). (3)

In his memoir [2], Nevai introduced the class of measuresM :=M(0, 1),
for which da ¥ M means

lim
nQ.

cn−1(da)
cn(da)

=
1
2

(4)

and

lim
nQ.
an(da)=0. (5)

Nevai proved the following characterizations of orthogonal polynomials
with respect to measures inM.

Theorem A [2, Theorems 4.1.12 and 4.1.13, pp. 32–34]. Let da be a
measure supported in [−1, 1]. If da ¥ M, then

lim
nQ.

Pn(da, z)
Pn−1(da, z)

=f(z) (6)

holds uniformly for every closed subset of C0[−1, 1], where f(z)=z+
`z2−1 .
Conversely, if (6) holds for an unbounded sequence of values of z, then
da ¥ M.

Theorem B [2, Theorems 3.2.3 and 3.2.4, pp. 17–34]. Let da be a
measure supported in [−1, 1]. Then da ¥ M if and only if

lim
nQ.

C
n

k=1
lkn(da) f(xkn) P

2
n−1(da, xkn)=

2
p
F
1

−1
f(x)`1−x2 dx (7)

holds for every bounded and Riemann integrable function f on [−1, 1].
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The main aim of this paper is to give new characterizations of orthogo-
nal polynomials with respect to measures inM, which are stated as follows.

Theorem 1. Let da be a measure supported in [−1, 1]. If da ¥ M, then
the relation (6) holds for every z ¥ C0(−1, 1) and

lim
nQ.

C
n

k=1
lkn(da)

P2n−1(da, xkn)
1−x2kn

= lim
nQ.

C
n

k=1
lkn(da)

P2n−1(da, xkn)
1−xkn

= lim
nQ.

C
n

k=1
lkn(da)

P2n−1(da, xkn)
1+xkn

=2. (8)

In particular, we have

lim
nQ.

Pn(da, 1)
Pn−1(da, 1)

=− lim
nQ.

Pn(da, −1)
Pn−1(da, −1)

=1. (9)

Theorem 2. Let da be a measure supported in [−1, 1]. Then the follow-
ing statements are equivalent:

(a) the relation da ¥ M holds;
(b) the relation

lim
nQ.

C
n

k=1
lkn(da) f(xkn)

P2n−1(da, xkn)
1−x2kn

=
2
p
F
1

−1

f(x)

`1−x2
dx (10)

holds for every bounded and Riemann integrable function f on [−1, 1];
(c) the relation

lim
nQ.

C
n

k=1
lkn(da) f(xkn)

P2n−1(da, xkn)
1−xkn

=
2
p
F
1

−1
f(x)=1+x

1−x
dx (11)

holds for every bounded and Riemann integrable function f on [−1, 1];
(d) the relation

lim
nQ.

C
n

k=1
lkn(da) f(xkn)

P2n−1(da, xkn)
1+xkn

=
2
p
F
1

−1
f(x)=1−x

1+x
dx (12)

holds for every bounded and Riemann integrable function f on [−1, 1].
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Theorem 3. Let da ¥ M, f be a bounded and Riemann integrable func-
tion on [−1, 1], Un be the nth Chebyshev polynomial of the second kind, and
m be a fixed integer. Then

lim
nQ.

C
n

k=1
lkn(da) f(xkn) Pn−1(da, xkn)

Pn+m(da, xkn)
1−x2kn

=−
sign m
p

F
1

−1
f(x) U|m|−1(x)

dx

`1−x2
, (13)

lim
nQ.

C
n

k=1
lkn(da) f(xkn) Pn−1(da, xkn)

Pn+m(da, xkn)
1−xkn

=−
sign m
p

F
1

−1
f(x) U|m|−1(x)=

1+x
1−x

dx, (14)

and

lim
nQ.

C
n

k=1
lkn(da) f(xkn) Pn−1(da, xkn)

Pn+m(da, xkn)
1+xkn

=−
sign m
p

F
1

−1
f(x) U|m|−1(x)=

1−x
1+x

dx. (15)

The relations (10) and (13) were proved by Nevai in [2, Theorem 4.2.3,
pp. 39–41; Theorem 4.2.17, p. 48] for the Szegő class S, for which da ¥ S
means [ln aŒ(x)]/`1−x2 ¥ L1(−1, 1).
Before proving the theorems we establish an auxiliary result which will
play a crucial role in this paper.

Lemma 1. If a sequence of positive numbers {an}
.

n=1 satisfies

lim
nQ.

an−1+an+1
an

=2, (16)

then

lim
nQ.

an−1
an
=1. (17)

Proof. First we observe that

1
2
[ A :=lim inf

nQ.

an−1
an

[ B :=lim sup
nQ.

an−1
an

[ 2, (18)
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for otherwise it would contradict (16). Next it suffices to show

A=B=1. (19)

To prove A=1 assume that for some subsequence of positive integers {nk}
we have

lim
kQ.

ank −1
ank
=A. (20)

Since by (16)

lim
kQ.

ank −2+ank
ank −1

= lim
kQ.

ank −1+ank+1
ank

=2, (21)

according to (20) we obtain

lim
kQ.

ank −2
ank −1

=2− lim
kQ.

ank
ank −1

=2−
1
A
=
2A−1
A
.

By (18) we have

2A−1
A

\ A.

Hence 1+A2−2A [ 0, i.e., (A−1)2 [ 0. This gives A=1. Similarly, if

lim
kQ.

ank −1
ank
=B,

then by the same argument as above we obtain B=1. This proves (19) and
(17). L

Proof of Theorem 1. To prove that the relation (6) holds for every
z ¥ C0(−1, 1) by Theorem A it is enough to show the relation (9). Now let
us do it. The relation (2) with x=1 gives

1−an=
cnPn+1(1)
cn+1Pn(1)

+
cn−1Pn−1(1)
cnPn(1)

. (22)

By (22) we obtain

Pn−1(1)+Pn+1(1)
Pn(1)

=5Pn−1(1)
Pn(1)

+
c2nPn+1(1)
cn−1cn+1Pn(1)

6+51− c2n
cn−1cn+1
6 Pn+1(1)
Pn(1)

=
cn

cn−1
(1−an)+51−

c2n
cn−1cn+1
6 Pn+1(1)
Pn(1)

.
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By (3) we see |an | [ 1 and hence 0 [ 1−an [ 2. By means of (22) we get

Pn+1(1)
Pn(1)

[
cn+1

cn
(1−an).

Hence by (4) and (5)

lim
nQ.

Pn−1(1)+Pn+1(1)
Pn(1)

= lim
nQ.

3 cn
cn−1
(1−an)+51−

c2n
cn−1cn+1
6 Pn+1(1)
Pn(1)
4=2.

Applying Lemma 1 we get

lim
nQ.

Pn(1)
Pn−1(1)

= lim
nQ.

Pn−1(1)
Pn(1)

=1.

Similarly, the second relation of (9) follows from the relation (2) with
x=−1:

1+an=
cn |Pn+1(−1)|
cn+1 |Pn(−1)|

+
cn−1 |Pn−1(−1)|
cn |Pn(−1)|

. (23)

To prove (8) we need to use some known formulas [1]:

Pn−1(1)
Pn(1)

=
cn−1

cn
C
n

k=1
lkn
P2n−1(xkn)
1−xkn

, (24)

Pn−1(−1)
Pn(−1)

=−
cn−1

cn
C
n

k=1
lkn
P2n−1(xkn)
1+xkn

, (25)

and

Pn−1(1)
Pn(1)

−
Pn−1(−1)
Pn(−1)

=
2cn−1
cn

C
n

k=1
lkn
P2n−1(xkn)
1−x2kn

. (26)

Clearly, (8) follows from (9), (4), and (24)–(26). L

Proof of Theorem 2. We give the proof of equivalence of Statements (a)
and (b) only; the proof of equivalence of Statements (a) and (c) as well as
Statements (a) and (d) is similar. The proof follows the line given in [2,
pp. 40–41].

(a)2 (b). Let e, 0 < e < 1, be an arbitrary and fixed number. Since the
function [f(x)/(1−x2)] I(x)[−1+e, 1− e] is bounded and Riemann integrable
on [−1, 1], where I[−1+e, 1− e] is the characteristic function of the interval
[−1+e, 1− e], by Theorem B we have

lim
nQ.

C
|xkn| [ 1− e

lknf(xkn)
P2n−1(xkn)
1−x2kn

=
2
p
F
1− e

−1+e

f(x)

`1−x2
dx. (27)
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Inserting f=1 into (27) gives

lim
nQ.

C
|xkn| [ 1− e

lkn
P2n−1(xkn)
1−x2kn

=
2
p
F
1− e

−1+e

1

`1−x2
dx. (28)

Using an obvious formula

1
p
F
1

−1

1

`1−x2
dx=1

it follows from (8) and (28) that

lim
nQ.

C
|xkn| > 1− e

lkn
P2n−1(xkn)
1−x2kn

=
4
p
F
1

1− e

1

`1−x2
dx. (29)

We have

: C
n

k=1
lknf(xkn)

P2n−1(xkn)
1−x2kn

−
2
p
F
1

−1

f(x)

`1−x2
dx:

=:5 C
|xkn| [ 1− e

lknf(xkn)
P2n−1(xkn)
1−x2kn

−
2
p
F
1− e

−1+e

f(x)

`1−x2
dx6

+ C
|xkn| > 1− e

lknf(xkn)
P2n−1(xkn)
1−x2kn

−
2
p
5F −1+e
−1

f(x)

`1−x2
dx+F

1

1− e

f(x)

`1−x2
dx6:

[ : C
|xkn| [ 1− e

lknf(xkn)
P2n−1(xkn)
1−x2kn

−
2
p
F
1− e

−1+e

f(x)

`1−x2
dx :

+[ sup
−1 [ x [ 1

|f(x)|] 5 C
|xkn| > 1− e

lkn
P2n−1(xkn)
1−x2kn

+
4
p
F
1

1− e

1

`1−x2
dx6 .

Then by virtue of (27) and (29)

lim sup
nQ.

: C
n

k=1
lknf(xkn)

P2n−1(xkn)
1−x2kn

−
2
p
F
1

−1

f(x)

`1−x2
dx :

[ [ sup
−1 [ x [ 1

|f(x)|]
8
p
F
1

1− e

1

`1−x2
dx.

Hence as eQ 0 we get (10).
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(b)2 (a). If f is an arbitrary bounded and Riemann integrable func-
tion on [−1, 1], then f(x)(1−x2) is also a bounded and Riemann inte-
grable function on [−1, 1]. Inserting the function f(x)(1−x2) into (10)
yields the relation (7). Applying Theorem B we conclude da ¥ M. L

Proof of Theorem 3. Again we show (13) only, because the proof of (14)
and (15) runs in a similar way. Applying Theorems 3.1.3 (m > 0) and 3.1.13
(m < 0) in [2, pp. 9 and 13] and using the recurrence relation (2) we get

Pn+m(xkn)=−[sign m] U|m|−1(xkn) Pn−1(xkn)+cn[|Pn−1(xkn)|+|Pn−2(xkn)|],

where limnQ. cn=0 holds uniformly for 1 [ k [ n if m is fixed. Using the
recurrence relation (2) replacing n by n−1 and putting x=xkn we obtain

|Pn−2(xkn)|=:
cn−1

cn−2
(xkn−an−1) Pn−1(xkn): [

2cn−1
cn−2

|Pn−1(xkn)|.

Thus

Pn+m(xkn)=−[sign m] U|m|−1(xkn) Pn−1(xkn)+c
g
n |Pn−1(xkn)|,

where limnQ. c
g
n=0 again holds uniformly for 1 [ k [ n if m is fixed.

Hence

C
n

k=1
lknf(xkn) Pn−1(xkn)

Pn+m(xkn)
1−x2kn

=−[sign m] C
n

k=1
lknf(xkn) U|m|−1(xkn)

P2n−1(xkn)
1−x2kn

+cgn C
n

k=1
lknf(xkn)

Pn−1(xkn) |Pn−1(xkn)|
1−x2kn

,

which by (10) implies (13). L
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