New Characterizations of Ratio Asymptotics for Orthogonal Polynomials ${ }^{1}$

Ying Guang Shi ${ }^{2}$
Department of Mathematics, Hunan Normal University, Changsha, Hunan, China; and Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing, China
E-mail: syg@1sec.cc.ac.cn
Communicated by Paul Nevai

Received May 30, 2000; accepted in revised form October 1, 2001

In this paper some new characterizations of ratio asymptotics for orthogonal polynomials are given. © 2002 Elsevier Science (USA)

Let α be a nondecreasing function on $[-1,1]$ with infinitely many points of increase such that all moments of $d \alpha$ are finite and $\left\{P_{n}\right\}$,

$$
\begin{equation*}
P_{n}(x):=P_{n}(d \alpha, x)=\gamma_{n} x^{n}+\cdots \tag{1}
\end{equation*}
$$

$\left(\gamma_{n}:=\gamma_{n}(d \alpha)>0\right)$, the orthonormal polynomials with respect to $d \alpha$. We call $d \alpha$ a measure.

Denote by $x_{k n}=x_{k n}(d \alpha)$ the zeros of $P_{n}(d \alpha)$ and by

$$
L_{n}(f, x):=\sum_{k=1}^{n} f\left(x_{k n}\right) \ell_{k n}(d \alpha, x)
$$

the Lagrange interpolating polynomial of $f \in C[-1,1]$, where the fundamental polynomials

$$
\ell_{k n}(d \alpha, x)=\frac{P_{n}(d \alpha, x)}{P_{n}^{\prime}\left(d \alpha, x_{k n}\right)\left(x-x_{k n}\right)}, \quad k=1,2, \ldots, n .
$$

As we know,

$$
\lambda_{n}(x):=\lambda_{n}(d \alpha, x)=\left[\sum_{k=0}^{n-1} P_{k}^{2}(d \alpha, x)\right]^{-1}=\left[\sum_{k=1}^{n} \frac{\ell_{k n}^{2}(d \alpha, x)}{\lambda_{k n}}\right]^{-1}
$$

${ }^{1}$ Project 19971089 supported by National Natural Science Foundation of China.
${ }^{2}$ Current address: Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, P.R. China.
are called the Christoffel functions, where

$$
\lambda_{k n}:=\lambda_{k n}(d \alpha)=\lambda_{n}\left(d \alpha, x_{k n}\right), \quad k=1,2, \ldots, n .
$$

The orthogonal polynomials $\left\{P_{n}(d \alpha)\right\}$ satisfy the three-term recurrence relation

$$
\begin{align*}
\left(x-\alpha_{n}(d \alpha)\right) P_{n}(d \alpha, x)= & \frac{\gamma_{n}(d \alpha)}{\gamma_{n+1}(d \alpha)} P_{n+1}(d \alpha, x) \\
& +\frac{\gamma_{n-1}(d \alpha)}{\gamma_{n}(d \alpha)} P_{n-1}(d \alpha, x), \quad n=0,1, \ldots, \tag{2}
\end{align*}
$$

where $P_{-1}=0, \gamma_{-1}=0$, and

$$
\begin{equation*}
\alpha_{n}(d \alpha)=\int_{-1}^{1} x P_{n}^{2}(d \alpha, x) d \alpha(x) \tag{3}
\end{equation*}
$$

In his memoir [2], Nevai introduced the class of measures $\mathbf{M}:=\mathbf{M}(0,1)$, for which $d \alpha \in \mathbf{M}$ means

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\gamma_{n-1}(d \alpha)}{\gamma_{n}(d \alpha)}=\frac{1}{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}(d \alpha)=0 \tag{5}
\end{equation*}
$$

Nevai proved the following characterizations of orthogonal polynomials with respect to measures in M.

Theorem A [2, Theorems 4.1.12 and 4.1.13, pp. 32-34]. Let $d \alpha$ be a measure supported in $[-1,1]$. If $d \alpha \in \mathbf{M}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P_{n}(d \alpha, z)}{P_{n-1}(d \alpha, z)}=\phi(z) \tag{6}
\end{equation*}
$$

holds uniformly for every closed subset of $\mathbb{C} \backslash[-1,1]$, where $\phi(z)=z+$ $\sqrt{z^{2}-1}$.

Conversely, if (6) holds for an unbounded sequence of values of z, then $d \alpha \in \mathbf{M}$.

Theorem B [2, Theorems 3.2.3 and 3.2.4, pp. 17-34]. Let da be a measure supported in $[-1,1]$. Then $d \alpha \in \mathbf{M}$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lambda_{k n}(d \alpha) f\left(x_{k n}\right) P_{n-1}^{2}\left(d \alpha, x_{k n}\right)=\frac{2}{\pi} \int_{-1}^{1} f(x) \sqrt{1-x^{2}} d x \tag{7}
\end{equation*}
$$

holds for every bounded and Riemann integrable function f on $[-1,1]$.

The main aim of this paper is to give new characterizations of orthogonal polynomials with respect to measures in \mathbf{M}, which are stated as follows.

Theorem 1. Let $d \alpha$ be a measure supported in $[-1,1]$. If $d \alpha \in \mathbf{M}$, then the relation (6) holds for every $z \in \mathbb{C} \backslash(-1,1)$ and

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \sum_{k=1}^{n} \lambda_{k n}(d \alpha) \frac{P_{n-1}^{2}\left(d \alpha, x_{k n}\right)}{1-x_{k n}^{2}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lambda_{k n}(d \alpha) \frac{P_{n-1}^{2}\left(d \alpha, x_{k n}\right)}{1-x_{k n}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lambda_{k n}(d \alpha) \frac{P_{n-1}^{2}\left(d \alpha, x_{k n}\right)}{1+x_{k n}} \\
& =2 \tag{8}
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P_{n}(d \alpha, 1)}{P_{n-1}(d \alpha, 1)}=-\lim _{n \rightarrow \infty} \frac{P_{n}(d \alpha,-1)}{P_{n-1}(d \alpha,-1)}=1 . \tag{9}
\end{equation*}
$$

Theorem 2. Let da be a measure supported in $[-1,1]$. Then the following statements are equivalent:
(a) the relation $d \alpha \in \mathbf{M}$ holds;
(b) the relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lambda_{k n}(d \alpha) f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(d \alpha, x_{k n}\right)}{1-x_{k n}^{2}}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \tag{10}
\end{equation*}
$$

holds for every bounded and Riemann integrable function f on $[-1,1]$;
(c) the relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lambda_{k n}(d \alpha) f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(d \alpha, x_{k n}\right)}{1-x_{k n}}=\frac{2}{\pi} \int_{-1}^{1} f(x) \sqrt{\frac{1+x}{1-x}} d x \tag{11}
\end{equation*}
$$

holds for every bounded and Riemann integrable function f on $[-1,1]$;
(d) the relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lambda_{k n}(d \alpha) f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(d \alpha, x_{k n}\right)}{1+x_{k n}}=\frac{2}{\pi} \int_{-1}^{1} f(x) \sqrt{\frac{1-x}{1+x}} d x \tag{12}
\end{equation*}
$$

holds for every bounded and Riemann integrable function f on $[-1,1]$.

Theorem 3. Let $d \alpha \in \mathbf{M}, f$ be a bounded and Riemann integrable function on $[-1,1], U_{n}$ be the nth Chebyshev polynomial of the second kind, and m be a fixed integer. Then

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \sum_{k=1}^{n} \lambda_{k n}(d \alpha) f\left(x_{k n}\right) P_{n-1}\left(d \alpha, x_{k n}\right) \frac{P_{n+m}\left(d \alpha, x_{k n}\right)}{1-x_{k n}^{2}} \\
& =-\frac{\operatorname{sign} m}{\pi} \int_{-1}^{1} f(x) U_{|m|-1}(x) \frac{d x}{\sqrt{1-x^{2}}}, \tag{13}\\
\lim _{n \rightarrow \infty} & \sum_{k=1}^{n} \lambda_{k n}(d \alpha) f\left(x_{k n}\right) P_{n-1}\left(d \alpha, x_{k n}\right) \frac{P_{n+m}\left(d \alpha, x_{k n}\right)}{1-x_{k n}} \\
& =-\frac{\operatorname{sign} m}{\pi} \int_{-1}^{1} f(x) U_{|m|-1}(x) \sqrt{\frac{1+x}{1-x}} d x
\end{align*}
$$

and

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lambda_{k n}(d \alpha) f\left(x_{k n}\right) P_{n-1}\left(d \alpha, x_{k n}\right) \frac{P_{n+m}\left(d \alpha, x_{k n}\right)}{1+x_{k n}} \\
\quad=-\frac{\operatorname{sign} m}{\pi} \int_{-1}^{1} f(x) U_{|m|-1}(x) \sqrt{\frac{1-x}{1+x}} d x \tag{15}
\end{gather*}
$$

The relations (10) and (13) were proved by Nevai in [2, Theorem 4.2.3, pp. 39-41; Theorem 4.2.17, p. 48] for the Szegő class \mathbf{S}, for which $d \alpha \in \mathbf{S}$ means $\left[\ln \alpha^{\prime}(x)\right] / \sqrt{1-x^{2}} \in L^{1}(-1,1)$.

Before proving the theorems we establish an auxiliary result which will play a crucial role in this paper.

Lemma 1. If a sequence of positive numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n-1}+a_{n+1}}{a_{n}}=2 \tag{16}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n-1}}{a_{n}}=1 \tag{17}
\end{equation*}
$$

Proof. First we observe that

$$
\begin{equation*}
\frac{1}{2} \leqslant A:=\liminf _{n \rightarrow \infty} \frac{a_{n-1}}{a_{n}} \leqslant B:=\limsup _{n \rightarrow \infty} \frac{a_{n-1}}{a_{n}} \leqslant 2, \tag{18}
\end{equation*}
$$

for otherwise it would contradict (16). Next it suffices to show

$$
\begin{equation*}
A=B=1 \text {. } \tag{19}
\end{equation*}
$$

To prove $A=1$ assume that for some subsequence of positive integers $\left\{n_{k}\right\}$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{a_{n_{k}-1}}{a_{n_{k}}}=A \tag{20}
\end{equation*}
$$

Since by (16)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{a_{n_{k}-2}+a_{n_{k}}}{a_{n_{k}-1}}=\lim _{k \rightarrow \infty} \frac{a_{n_{k}-1}+a_{n_{k}+1}}{a_{n_{k}}}=2, \tag{21}
\end{equation*}
$$

according to (20) we obtain

$$
\lim _{k \rightarrow \infty} \frac{a_{n_{k}-2}}{a_{n_{k}-1}}=2-\lim _{k \rightarrow \infty} \frac{a_{n_{k}}}{a_{n_{k}-1}}=2-\frac{1}{A}=\frac{2 A-1}{A} .
$$

By (18) we have

$$
\frac{2 A-1}{A} \geqslant A .
$$

Hence $1+A^{2}-2 A \leqslant 0$, i.e., $(A-1)^{2} \leqslant 0$. This gives $A=1$. Similarly, if

$$
\lim _{k \rightarrow \infty} \frac{a_{n_{k}-1}}{a_{n_{k}}}=B
$$

then by the same argument as above we obtain $B=1$. This proves (19) and (17).

Proof of Theorem 1. To prove that the relation (6) holds for every $z \in \mathbb{C} \backslash(-1,1)$ by Theorem A it is enough to show the relation (9). Now let us do it. The relation (2) with $x=1$ gives

$$
\begin{equation*}
1-\alpha_{n}=\frac{\gamma_{n} P_{n+1}(1)}{\gamma_{n+1} P_{n}(1)}+\frac{\gamma_{n-1} P_{n-1}(1)}{\gamma_{n} P_{n}(1)} . \tag{22}
\end{equation*}
$$

By (22) we obtain

$$
\begin{aligned}
\frac{P_{n-1}(1)+P_{n+1}(1)}{P_{n}(1)} & =\left[\frac{P_{n-1}(1)}{P_{n}(1)}+\frac{\gamma_{n}^{2} P_{n+1}(1)}{\gamma_{n-1} \gamma_{n+1} P_{n}(1)}\right]+\left[1-\frac{\gamma_{n}^{2}}{\gamma_{n-1} \gamma_{n+1}}\right] \frac{P_{n+1}(1)}{P_{n}(1)} \\
& =\frac{\gamma_{n}}{\gamma_{n-1}}\left(1-\alpha_{n}\right)+\left[1-\frac{\gamma_{n}^{2}}{\gamma_{n-1} \gamma_{n+1}}\right] \frac{P_{n+1}(1)}{P_{n}(1)}
\end{aligned}
$$

By (3) we see $\left|\alpha_{n}\right| \leqslant 1$ and hence $0 \leqslant 1-\alpha_{n} \leqslant 2$. By means of (22) we get

$$
\frac{P_{n+1}(1)}{P_{n}(1)} \leqslant \frac{\gamma_{n+1}}{\gamma_{n}}\left(1-\alpha_{n}\right) .
$$

Hence by (4) and (5)

$$
\lim _{n \rightarrow \infty} \frac{P_{n-1}(1)+P_{n+1}(1)}{P_{n}(1)}=\lim _{n \rightarrow \infty}\left\{\frac{\gamma_{n}}{\gamma_{n-1}}\left(1-\alpha_{n}\right)+\left[1-\frac{\gamma_{n}^{2}}{\gamma_{n-1} \gamma_{n+1}}\right] \frac{P_{n+1}(1)}{P_{n}(1)}\right\}=2 .
$$

Applying Lemma 1 we get

$$
\lim _{n \rightarrow \infty} \frac{P_{n}(1)}{P_{n-1}(1)}=\lim _{n \rightarrow \infty} \frac{P_{n-1}(1)}{P_{n}(1)}=1 .
$$

Similarly, the second relation of (9) follows from the relation (2) with $x=-1$:

$$
\begin{equation*}
1+\alpha_{n}=\frac{\gamma_{n}\left|P_{n+1}(-1)\right|}{\gamma_{n+1}\left|P_{n}(-1)\right|}+\frac{\gamma_{n-1}\left|P_{n-1}(-1)\right|}{\gamma_{n}\left|P_{n}(-1)\right|} . \tag{23}
\end{equation*}
$$

To prove (8) we need to use some known formulas [1]:

$$
\begin{gather*}
\frac{P_{n-1}(1)}{P_{n}(1)}=\frac{\gamma_{n-1}}{\gamma_{n}} \sum_{k=1}^{n} \lambda_{k n} \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}}, \tag{24}\\
\frac{P_{n-1}(-1)}{P_{n}(-1)}=-\frac{\gamma_{n-1}}{\gamma_{n}} \sum_{k=1}^{n} \lambda_{k n} \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1+x_{k n}}, \tag{25}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{P_{n-1}(1)}{P_{n}(1)}-\frac{P_{n-1}(-1)}{P_{n}(-1)}=\frac{2 \gamma_{n-1}}{\gamma_{n}} \sum_{k=1}^{n} \lambda_{k n} \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}} . \tag{26}
\end{equation*}
$$

Clearly, (8) follows from (9), (4), and (24)-(26).
Proof of Theorem 2. We give the proof of equivalence of Statements (a) and (b) only; the proof of equivalence of Statements (a) and (c) as well as Statements (a) and (d) is similar. The proof follows the line given in [2, pp. 40-41].
(a) \Rightarrow (b). Let $\varepsilon, 0<\varepsilon<1$, be an arbitrary and fixed number. Since the function $\left[f(x) /\left(1-x^{2}\right)\right] I(x)_{[-1+\varepsilon, 1-\varepsilon]}$ is bounded and Riemann integrable on $[-1,1]$, where $I_{[-1+\varepsilon, 1-\varepsilon]}$ is the characteristic function of the interval $[-1+\varepsilon, 1-\varepsilon]$, by Theorem B we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{\left|x_{k n}\right| \leqslant 1-\varepsilon} \lambda_{k n} f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}=\frac{2}{\pi} \int_{-1+\varepsilon}^{1-\varepsilon} \frac{f(x)}{\sqrt{1-x^{2}}} d x . \tag{27}
\end{equation*}
$$

Inserting $f=1$ into (27) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{\left|x_{k n}\right| \leqslant 1-\varepsilon} \lambda_{k n} \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}=\frac{2}{\pi} \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-x^{2}}} d x . \tag{28}
\end{equation*}
$$

Using an obvious formula

$$
\frac{1}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=1
$$

it follows from (8) and (28) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{\left|x_{k n}\right|>1-\varepsilon} \lambda_{k n} \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}=\frac{4}{\pi} \int_{1-\varepsilon}^{1} \frac{1}{\sqrt{1-x^{2}}} d x . \tag{29}
\end{equation*}
$$

We have

$$
\begin{aligned}
\mid \sum_{k=1}^{n} & \left.\lambda_{k n} f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}-\frac{2}{\pi} \int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \right\rvert\, \\
= & \left\lvert\,\left[\sum_{\left|x_{k n}\right| \leqslant 1-\varepsilon} \lambda_{k n} f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}-\frac{2}{\pi} \int_{-1+\varepsilon}^{1-\varepsilon} \frac{f(x)}{\sqrt{1-x^{2}}} d x\right]\right. \\
& +\sum_{\left|x_{k n}\right|>1-\varepsilon} \lambda_{k n} f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}} \\
& \left.-\frac{2}{\pi}\left[\int_{-1}^{-1+\varepsilon} \frac{f(x)}{\sqrt{1-x^{2}}} d x+\int_{1-\varepsilon}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x\right] \right\rvert\, \\
\leqslant & \left|\sum_{\left|x_{k n}\right| \leqslant 1-\varepsilon} \lambda_{k n} f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}-\frac{2}{\pi} \int_{-1+\varepsilon}^{1-\varepsilon} \frac{f(x)}{\sqrt{1-x^{2}}} d x\right| \\
& +\left[\sup _{-1 \leqslant x \leqslant 1}|f(x)|\right]\left[\sum_{\left|x_{k n}\right|>1-\varepsilon} \lambda_{k n} \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}+\frac{4}{\pi} \int_{1-\varepsilon}^{1} \frac{1}{\sqrt{1-x^{2}}} d x\right] .
\end{aligned}
$$

Then by virtue of (27) and (29)

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left|\sum_{k=1}^{n} \lambda_{k n} f\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}}-\frac{2}{\pi} \int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x\right| \\
& \quad \leqslant\left[\sup _{-1 \leqslant x \leqslant 1}|f(x)|\right] \frac{8}{\pi} \int_{1-\varepsilon}^{1} \frac{1}{\sqrt{1-x^{2}}} d x .
\end{aligned}
$$

Hence as $\varepsilon \rightarrow 0$ we get (10).
(b) \Rightarrow (a). If f is an arbitrary bounded and Riemann integrable function on $[-1,1]$, then $f(x)\left(1-x^{2}\right)$ is also a bounded and Riemann integrable function on $[-1,1]$. Inserting the function $f(x)\left(1-x^{2}\right)$ into (10) yields the relation (7). Applying Theorem B we conclude $d \alpha \in \mathbf{M}$. 【

Proof of Theorem 3. Again we show (13) only, because the proof of (14) and (15) runs in a similar way. Applying Theorems 3.1.3 $(m>0)$ and 3.1.13 $(m<0)$ in [2, pp. 9 and 13] and using the recurrence relation (2) we get

$$
P_{n+m}\left(x_{k n}\right)=-[\operatorname{sign} m] U_{|m|-1}\left(x_{k n}\right) P_{n-1}\left(x_{k n}\right)+c_{n}\left[\left|P_{n-1}\left(x_{k n}\right)\right|+\left|P_{n-2}\left(x_{k n}\right)\right|\right],
$$

where $\lim _{n \rightarrow \infty} c_{n}=0$ holds uniformly for $1 \leqslant k \leqslant n$ if m is fixed. Using the recurrence relation (2) replacing n by $n-1$ and putting $x=x_{k n}$ we obtain

$$
\left|P_{n-2}\left(x_{k n}\right)\right|=\left|\frac{\gamma_{n-1}}{\gamma_{n-2}}\left(x_{k n}-\alpha_{n-1}\right) P_{n-1}\left(x_{k n}\right)\right| \leqslant \frac{2 \gamma_{n-1}}{\gamma_{n-2}}\left|P_{n-1}\left(x_{k n}\right)\right| .
$$

Thus

$$
P_{n+m}\left(x_{k n}\right)=-[\operatorname{sign} m] U_{|m|-1}\left(x_{k n}\right) P_{n-1}\left(x_{k n}\right)+c_{n}^{*}\left|P_{n-1}\left(x_{k n}\right)\right|,
$$

where $\lim _{n \rightarrow \infty} c_{n}^{*}=0$ again holds uniformly for $1 \leqslant k \leqslant n$ if m is fixed. Hence

$$
\begin{aligned}
& \sum_{k=1}^{n} \lambda_{k n} f\left(x_{k n}\right) P_{n-1}\left(x_{k n}\right) \frac{P_{n+m}\left(x_{k n}\right)}{1-x_{k n}^{2}} \\
&=-[\operatorname{sign} m] \sum_{k=1}^{n} \lambda_{k n} f\left(x_{k n}\right) U_{|m|-1}\left(x_{k n}\right) \frac{P_{n-1}^{2}\left(x_{k n}\right)}{1-x_{k n}^{2}} \\
&+c_{n}^{*} \sum_{k=1}^{n} \lambda_{k n} f\left(x_{k n}\right) \frac{P_{n-1}\left(x_{k n}\right)\left|P_{n-1}\left(x_{k n}\right)\right|}{1-x_{k n}^{2}},
\end{aligned}
$$

which by (10) implies (13).

REFERENCES

1. G. Freud, On Hermite-Fejér interpolation processes, Studia Sci. Math. Hungar. 7 (1972), 307-316.
2. P. Nevai, "Orthogonal Polynomials," Memoirs of the Amer. Math. Soc., Vol. 213, Amer. Math. Soc., Providence, 1979.
